Characterization of Recombinant p20 Trypsin Inhibitor,
a New Protein from Glycine max

Akihito MATSUSHIMA, Yoshiyuki ASHIDA, Junko WATANABE, Toshifumi HIRATA*

Department of Mathematical and Life Science, Graduate School of Science,
Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
*Corresponding author E-mail address: thirata@sci.hiroshima-u.ac.jp

Received 12 September 2002; accepted 15 October 2002

Abstract

A 20-kDa protein (p20) having 40% sequence similarity with Kunitz-type soybean trypsin inhibitor (STI) from Glycine max (soybean) cultured cells was expressed in Escherichia coli. The recombinant p20 (rp20) inhibited the activity of trypsin at the same level as STI (rp20, Ki = 50 nM; STI, Ki = 75 nM), and both rp20 and STI displayed non-competitive inhibition of trypsin activity. Although STI inhibited the activity of α-chymotrypsin (Ki = 140 nM) and elastase (Ki = 207 nM), rp20 did not inhibit the activity of α-chymotrypsin and elastase. These results show that p20 is a novel type of trypsin inhibitor.

Key words: α-Chymotrypsin, Elastase, Glycine max (soybean), Inhibition mechanism, Kunitz-type trypsin inhibitor.

Abbreviations

BAPA, benzoyl-L-arginine p-nitroanilide; STI, soybean trypsin inhibitor.

Recently we isolated from Glycine max (soybean) cultured cells, a 20-kDa protein (p20) having trypsin inhibitory activity on the basis of its GTP binding activity (Hirata et al., 1999). The cDNA clone (accession number AB029441) of p20 was isolated and sequenced, and the putative amino acid sequence of p20 indicated an approximately 40% sequence similarity with Kunitz-type soybean trypsin inhibitor (STI) (Ashida et al., 2000). Protease inhibitors belonging to the STI family has been extensively studied and at least 10 members are reported in soybean cells (Kim et al., 1985; Jofuku et al., 1989). The amino acid residues at reactive site of trypsin inhibitors were reported to be Arg (63)-Ile (64) in Tiα, Tiβ and Tiγ (Blow et al., 1974; Sweet et al., 1974) and His (63)-Ala (64) in KT1α and KT1β (Jofuku et al., 1989). However, the corresponding amino acid residues of p20 were Lys (63)-Ile (64) (Ashida et al., 2000). These facts suggested that p20 is a novel type of trypsin inhibitor. In order to clarify the inhibitory properties of p20, the recombinant p20 (rp20) was expressed and then its inhibitor activity and mechanism were investigated.

Total cellular RNA was isolated from soybean cultured cells using an ISogen kit (Nippon Gene Co.). RNA purification was then followed by single-stranded cDNA synthesis using an oligo(dT)20-M13M4 adaptor primer. Two oligonucleotides, HVR-1 (+136 to +154; accession number AB029441) and HVR-1 (+674 to +693), were used as primers for polymerase chain reaction (PCR) amplification to produce the mature form p20 cDNA from single-stranded cDNA. These primers have BamHI and XhoI restriction sequences, respectively. The amplification was done at 94°C for 2 min for denaturation, 55°C for 30 s for annealing, and 70°C for 30 s for synthesis, followed by 29 cycles of these conditions. The final PCR product of 571 base pairs in length was obtained, and ligated to the pPCR-Script SK(-) vector (Stratagene) followed by transformation into Escherichia coli DH5α competent cells. Double-stranded DNA sequencing by the dideoxynucleotide chain termination method was done using a BigDye terminator cycle sequencing kit (Applied Biosystems) and an ABI PRISM 310 genetic analyzer (Applied Biosystems). Then, the cDNA clone of p20 was digested with BamHI (New England Biolabs) and XhoI (New England Biolabs), and ligated to the pGEX-6P-1 expression vector (Amersham Bioscience), which
contains a region coding for expression as a fusion protein with glutathione S-transferase (GST), to construct pGEX–6P–1(p20). Finally, the pGEX–6P–1 (p20) was transformed into E. coli BL21 competent cells. The full-length sequence of p20 cDNA cloned into pGEX–6P–1(p20) was confirmed by DNA sequencing.

The E. coli strain transformed with pGEX–6P–1(p20) was cultivated at 30°C for 6 h in LB medium (Luria et al., 1960) containing 50 μg ml⁻¹ of ampicillin. After the incubation, isopropyl-β-D-thiogalactopyranoside was added to a final concentration of 0.1 mM in the cultures and incubated at 16°C for 16 h. After centrifugation, the E. coli pellet was resuspended in sonication buffer (1mM EDTA, 50 mM Tris–HCl (pH 8.0), 0.5 mM dithiothreitol and 51 mM NaCl) and sonicated. The sonicated mixture was centrifuged to obtain the soluble protein fraction. The GST fusion protein was purified using glutathione Sepharose 4B (Pharmacia Biotech) affinity column chromatography and digested by PreScission protease (Amersham Biosciences) to release p20 from the GST fusion protein (Fig. 1). The purified p20 was finally dialyzed to exchange buffers to 10 mM Tris–HCl (pH 7.0) containing 0.5 mM dithiothreitol. The amino acid sequence at the N-terminal region of p20 was analyzed using an Applied Biosystems model 373A protein sequencer. The analysis of amino acid sequence at the N-terminal region of p20 (GPLGSDIVFDTEGNPIR) showed that p20 has a N-terminal amino acid sequence of p20 (DIVFD-TEGNPIR) and a sequence from part of the multiple cloning site of pGEX–6P–1 vector (GPLGS). The observed molecular mass of p20 (20,495 ± 20) by TOF–MASS spectrum was in agreement with a theoretical molecular weight (20,506) of p20 with the additional peptide (GPLGS). These results confirmed that p20 has the same amino acid sequence as that deduced from the putative amino acid sequence of the p20 cDNA clone.

The amino acid residues at the reactive site of Ti (Ti', Ti⁵ and Ti⁶), which were most intensively studied STI, are Arg (63)-Ile (64) (Blow et al., 1974; Sweet et al., 1974). However, Arg(63) of Ti is replaced by Lys(63) in p20 (Ashida et al., 2000). It has also been reported that enzymatic replacement of the Arg (63) of Ti with Lys conserved the trypsin inhibitor activity of Ti (Sealock et al., 1969). Therefore, the trypsin inhibition activities of p20 and STI were compared. The inhibition activity for the hydrolysis of benzoyl-L-arginine p-nitroanilide (BAPA) was measured by the change in absorbance at 410 nm. For double-reciprocal analysis, p20 (37 nM) or STI (47 nM) was preincubated at 25°C in a total volume of 1.5 ml of 100 mM Tris–HCl (pH 7.0) containing 90 nM trypsin. After 8 min incubation, 0.5–2.4 mM BAPA (Peptide Institute, Inc) was added, and the absorbance at 410 nm was continuously measured for 15 min using a UV/VIS Spectrophotometer. For the stoichiometric examination of trypsin inhibition of p20 and STI, the increasing amount of p20 or STI was preincubated at 30°C in a total volume of 0.3 ml of 100 mM Tris–HCl (pH 7.0) containing 83 nM trypsin. After 4 min incubation, 333 μM BAPA was added, and the absorbance at 410 nm was continuously measured for 6 min by a microplate reader. One unit of trypsin activity was defined as the change of p-nitroaniline concentration per second (nM s⁻¹). Fig. 2 shows the

Fig. 1 Expression and purification of p20. Lane 1, crude soluble fraction; lane 2, purified p20.

Fig. 2 Inhibitory activity of p20 and STI. Open circle, STI; closed circle, p20.
Table 1. Comparison of the inhibitory activities of rp20 and STI

<table>
<thead>
<tr>
<th>Protease</th>
<th>Substrate</th>
<th>pH</th>
<th>Ki value (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin</td>
<td>Bz-Arg-pNA</td>
<td>7.0</td>
<td>50</td>
</tr>
<tr>
<td>α-Chymotrypsin</td>
<td>Suc-Ala-Ala-Pro-Phe-MCA</td>
<td>7.0</td>
<td>Ni [^{1}] 140</td>
</tr>
<tr>
<td>Elastase</td>
<td>Suc-Ala-Ala-Ala-pNA</td>
<td>7.0</td>
<td>Ni 207</td>
</tr>
</tbody>
</table>

\[^{1}\] Ni denotes no inhibition.

After 4 min incubation, 2 \(\mu\)l of 1.5–10 mM succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine 4-methylcoumaryl-7-amine (Peptide Institute, Inc) was added and the changes in relative fluorescence units were continuously measured for 6 min. The elastase activity was measured by the hydrolysis of succinyl-L-alanyl-L-alanyl-L-alanine p-nitroanilide (Suc-Ala-Ala-Ala-pNA) (Peptide Institute, Inc) by a similar procedure to that described for the trypsin inhibitor activity, except for the concentration of elastase (Wako Pure Chemicals Ind., Ltd) (22 nM), rp20 (260 nM), STI (195 nM) and suc-Ala-Ala-Ala-pNA (0.24–1.308 mM). α-Chymotrypsin was non-competitively inhibited by STI \((Ki = 140 \text{ nM})\), but not by rp20 (Table 1). Elastase was also inhibited by STI \((Ki = 207 \text{ nM})\), but not by rp20 (Table 1). An excessive amount of rp20 did not inhibit either serine protease. These results show that rp20 has different specificity toward serine proteases than STI.

The X-ray crystallographic analysis of a Ti-trypsin complex has indicated that Ti interacts with the trypsin at the positions of Asp (1), Asn (13), Ser (61), Tyr (62), Arg (63), Ile (64), Arg (65) and His (71) of Ti (Sweet et al., 1974). However, the corresponding amino acid residues of p20 (Ashida et al., 2000) were different from those of Ti at the positions of Phe (62), Lys (63), Leu (65) and Leu (71). Such differences in the amino acid residues at the positions of inhibitor–trypsin interaction may cause distinct specificity to serine proteases. On the other hand, Jofuku et al. (1989) reported another type of trypsin inhibitor, KTi (KTi1 and KTi2), whose corresponding amino acid residues are His (63)–Ala (64). They have reported that the KTi genes do not encode proteins with trypsin inhibitor activity, because KTi from transformed tobacco plants with KTi genes did not react with a Kunitz-type trypsin inhibitor antibody (Jofuku et al., 1989). These results suggest that the STI family should be classified into three subfamilies and p20 may be a new member of the STI family.
Acknowledgement

We thank Dr. Shunsuke Izumi of Hiroshima University for his useful discussion and the measurement of TOF-MASS spectrum.

References

