Identification of Arabidopsis accession with resistance to Botrytis cinerea by natural variation analysis, and characterization of the resistance response

Mari Narusaka¹, Nan Yao², Atsuko Iuchi³, Satoshi Iuchi³, Tomonori Shiraishi⁴, Yoshihiro Narusaka¹,*

¹Research Institute for Biological Sciences, Okayama 716-1241, Japan; ²State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; ³Experimental Plant Division, RIKEN Bio Resource Center, Tsukuba, Ibaraki 305-0074, Japan; ⁴Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan

*E-mail: yo_narusaka@bio-ribs.com Tel: +81-866-56-9450 Fax: +81-866-56-9453

Received October 22, 2012; accepted December 26, 2012 (Edited by Y. Watanabe)

Abstract Botrytis cinerea is a ubiquitous necrotrophic fungal pathogen that infects over 200 different plant species. We have analyzed 17 Arabidopsis ecotypes for natural variations in their susceptibility to B. cinerea, and found compatible and incompatible Arabidopsis–Botrytis interactions. We determined that Arabidopsis ecotype Ler is resistant to 5 B. cinerea isolates used in this study. To further investigate the roles of the salicylic acid (SA)-dependent defense response pathways against B. cinerea, we inoculated various Arabidopsis mutants with the pathogen. Arabidopsis Ler plants expressing the nahG gene inoculated with B. cinerea showed as much resistance as the parental plants (Ler-wild type). The sgt1b-1 and rar1-10 mutants also showed resistance to the pathogen. In this study, we discuss the natural variations in the symptoms observed among various ecotypes upon inoculation with B. cinerea. In addition, SA plays only a minor role in preventing systemic infection with B. cinerea.

Key words: Arabidopsis, Botrytis cinerea, gray mold, natural variation, salicylic acid.

Plants interact with various types of microbes, only a few of which actually harm them. Plant diseases rarely occur because plants have evolved sophisticated defense mechanisms against potential pathogens. Many plants defend themselves against microbial pathogens by activating both localized and systemic resistance responses. The recognition of the invading pathogen by the plant at an early stage of infection is crucial. Specific recognition is thought to be mediated through direct or indirect interactions between the product of a resistance (R) gene in the plant and product of a corresponding avirulence (avr) gene in the pathogen.

Three major signaling pathways have been identified, mediated by salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) (Hammond-Kosack and Jones 1996; Ryals et al. 1996). These signaling pathways result in induction of various defense responses aimed at restricting pathogen growth and symptoms, including accumulation of antimicrobial compounds/proteins and expression of defense-related genes. Arabidopsis thaliana has been extensively used as a model organism for plant pathology studies, and can be colonized by both biotrophic and necrotrophic pathogens (Glazebrook et al. 1997; Thomma et al. 1998). SA-dependent signaling is found to activate the defense response pathways that primarily confer resistance to bacterial or biotrophic fungal pathogens. In contrast, ET and JA have been implicated in defense responses to necrotrophic pathogens in a few plant species (Ferrarri et al. 2003; Thomma et al. 1999a). Necrotrophs obtain nutrients from dead or dying cells. Botrytis cinerea, the causal agent of gray mold, is a ubiquitous necrotrophic fungal pathogen that infects over 200 different plant species (Elad 1997). Infection of Arabidopsis plants with B. cinerea induces a subset of defense genes that are not induced by SA, including the PDF1.2 gene, which encodes defensin, an antifungal protein (Penninckx et al. 1998; Thomma et al. 1998; 1999a). Induction of PDF1.2 is blocked in ein2 and coi1 mutants (Penninckx et al. 1996; Zimmerman et al. 2001), which are defective in ET- or JA-signal transduction pathways, respectively (Feys et al. 1994; Guzman and Ecker 1990). JA insensitivity conferred by the coi1 mutant and ET insensitivity conferred by the ein2 mutant depresses the resistance of the respective plants to B. cinerea infection (Thomma et al. 1998; 1999a). Consistent with these data, B. cinerea infection fails to induce SA
accumulation or SAR (systemic acquired resistance) in Arabidopsis (Govrin and Levine 2002). However, several reports show that SA or its analog BTH (benzo(1,2,3)-thiadiazole-7-carboxylic acid S-methyl ester) can induce resistance to B. cinerea in several plant species, including bean, tobacco, and tomato (Audenaert et al. 2002; De Meyer et al. 1999; Murphy et al. 2000). In addition, Arabidopsis local resistance to B. cinerea involves SA and phytoalexin, and requires EDS4 and PAD2, but not SID2, EDS5, or PAD4 (Ferrari et al. 2003).

To understand the genetic and molecular basis of plant-pathogen interactions, we utilize natural variations of Arabidopsis to study the genetics of resistance to B. cinerea. A. thaliana provides a genetically amenable system in which to examine the various components of disease resistance (Koch and Slusarenko 1990). Several accessions (ecotypes) of A. thaliana are available, which differ genetically because of selection pressures imposed on them by their different environments of origin (Kagan and Hammerschmidt 2002). These differences include variation in resistance to pathogens. For example, ecotypes of Arabidopsis differ in their ability to resist infection by the club root pathogen Plasmophora brassicae (Fuchs and Sacristan 1996), cauliflower mosaic virus (Callaway et al. 1996; Leisner and Howell 1992), turnip crinkle virus (Dempsey et al. 1997), bacterium Xanthomonas campestris pv. campestris (Tsuji et al. 1991), oomycetes Albugo candida (Holub et al. 1995), Peronospora parasitica (Mauch-Mani et al. 1993), and hemibiotrophic fungal pathogen Colletotrichum higginsianum (Narusaka et al. 2004; 2009, O’Connell et al. 2004). Resistance to these pathogens is based on the presence of 1 or more R genes. The types of R genes varied among ecotypes, which may be a reflection of variation in disease pressure in the locations where the ecotypes were collected (Kagan and Hammerschmidt 2002). Therefore, to determine the components of the host response to necrotrophic infection, mutants with enhanced susceptibility to B. cinerea were identified. Veronese et al. (2004) reported that the BOS loci in Arabidopsis were required for resistance to B. cinerea infection. Some of their loci may affect camalexin levels and responsiveness to ET and JA. In this study, we describe variation in the symptoms observed among various ecotypes following inoculation with B. cinerea. We also show SA plays a minor role in preventing systemic infection with B. cinerea.

Isolates of B. cinerea Persoon isolated from Brassica campestris L. (MAFF237695) and Lactuca sativa L. (MAFF305538) were provided by NIAS Genebank. An isolate of B. cinerea obtained from Cucumis sativus L. (kumiai-chem BC1) was provided by Kumiai Chemical Industry Co., LTD. Isolates of B. cinerea obtained from Solanum lycopersicum L. (Ibaen-04016 and Ibaen-04042) were provided by Horticultural Institute, Ibaraki Agricultural Center. Cultures of the isolate were maintained on potato dextrose agar (PDA) (Difco, Detroit, MI, USA) at 24°C in the dark. To obtain spores, B. cinerea mycelia were placed on PDA and incubated at 24°C in the dark for 3–4 days, and then incubated at 24°C under continuous black light form blue lamps (FL10BLB; Toshiba Corp., Tokyo, Japan) for 2–3 days. Conidia were then obtained by gentle scraping of cultures. The spore suspension was filtered through two layers of sterile cheesecloth and, the spores were counted on a hemacytometer slide.

A. thaliana ecotype Columbia (Col-0) plants were grown in soil for 28 days in a growth chamber at 22°C under a 12-h light/12-h dark cycle. For the intact plant assay, whole plants were inoculated with five different strains of B. cinerea (MAFF237695, MAFF305538, kumiai-chem BC1, Ibaen-04016, and Ibaen-04042) spore suspension (1.5×105 spores ml−1) in 1/2 potato dextrose broth (PDB) (Difco, Detroit, MI, USA). Inoculated plants were then placed in a growth chamber at 22°C with a 12-h light/12-h dark cycle and maintained at 100% relative humidity. Control plants were treated only with 1/2 PDB or distilled water. When challenged with their fungi, Col-0 plants developed brown necrotic lesions. These lesions had expanded from the inoculation site by 2 days post inoculation (dpi), and subsequently spread over the entire leaf (Figures 1, 2). The fungus sporulated on the host and recovered from the infected plant material was used to complete Koch’s postulates. There were no obvious differences among the fungal strains with respect to the symptoms they induced; therefore, only one among them (MAFF237695) was chosen for further experiments.

Arabidopsis ecotypes, with Gr-1 and St-0, were obtained from SENDAI Arabidopsis Seed Stock Center (SASSC). Seeds from Aa-0, AUA/RHON, Bensheim, DijonG, Ei-2, Greenville, Hi-0, Kendalville, Mühlen, Niederzenz, and S96 were purchased from Lehle Seeds (TX, USA). The Col-0, Ler, Nos, and RLD were obtained from RIKEN BRC. To investigate natural variations in B. cinerea susceptibility, we tested 17 Arabidopsis ecotypes mentioned above for susceptibility to B. cinerea (MAFF237695). We evaluated the disease reactions of Arabidopsis ecotypes to B. cinerea based on certain aspects, such as the extent of pathogen colonization of the host as evaluated by lactophenol-trypan blue staining, and the degree of host necrosis. In addition, the lesion size has been used as a parameter in several studies to indicate the plant’s susceptibility to B. cinerea (Ferarri et al. 2003; Govrin and Levine 2000; Mengiste et al. 2003; Denby et al. 2004). One or two 5-µl drops of the spore suspension (1.5×105 spores ml−1 in 1/2 PDB) were placed on each detached leaf of Arabidopsis plants without wounding. The lesion diameter varied considerably among the Arabidopsis ecotypes with the
2-day lesion size ranging from 0 mm for Ler to 8 mm for Col-0 (Figure 1). Control plants inoculated with 1/2 PDB instead of the fungus did not develop any lesions. Most of the interactions observed with these ecotypes were compatible. However, an incompatible phenotype was found following inoculation of ecotype Ler, which appeared to be resistant, developing only small necrotic flecks at the inoculation sites by 3 dpi that did not expand further (Figure 2). Spore germination was observed microscopically on the surface of Ler plants, and none of the sporelings entered the plant cells. No cell death appeared on inoculated leaves 2 dpi (Figure 2). The Ler plants were inoculated with five different isolates of B. cinerea (MAFF237695, MAFF305538, kumiai-chem BC1, Ibaen-04016 and Ibaen-04042). Ler plants developed almost no symptoms, even after 5 days of inoculation (data not shown).

F2 progeny from a test cross between Ler and Col-0 segregated 63 : 548 for resistance versus susceptibility to B. cinerea (MAFF237695). Thus, Ler does not appear to have a single dominant allele that confers resistance to B. cinerea. On the contrary, Denby et al. (2004) showed that all 16 Arabidopsis ecotypes, containing Ler, were susceptible to B. cinerea, and several QTL responsible for B. cinerea susceptibility were identified. As Denby et al. suggested that different mechanisms govern defense against two Botrytis isolates from grape and pepper, defense against five isolates used here may be different from isolates used by Denby et al.

Attempts by microbial pathogens to infect plants trigger the activation of a defense signaling network. Arabidopsis has three main defense-related pathways, namely SA-, JA-, and ET-mediated pathways. In this study, we investigated the effect of ethephon, and BTH application on the induction of resistance to B. cinerea. The Col-0 plants were pre-treated with 1 mM ethephon, or 0.5 mM BTH, and then were inoculated with B. cinerea. The ethephon-treatment protected Col-0 plants against B. cinerea when observed 3 days after inoculation (Figure 3); however, BTH-treatment caused severe disease symptoms as compared with the control.
with those reported by Thomma et al. (1999a), Govrin and Levine (2002) also demonstrated that the treatments with SA and BTH failed to inhibit \textit{B. cinerea} growth. Several reports suggest that SA-signaling also plays a role in resistance to \textit{B. cinerea} (Ferrari et al. 2003; Govrin and Levine 2002).

We investigated induction of the pathogen-inducible genes \textit{PR-1} (Uknes et al. 1992); \textit{PR-4}, which encodes a hevein-like protein (Potter et al. 1993); and \textit{PDF1.2} (Penninckx et al. 1996), in \textit{Ler} and Col-0 plants by using qRT-PCR analyses. \textit{PR-1} is an indicator for SA-dependent defense responses (Delaney et al. 1994; Penninckx et al. 1996; Thomma et al. 1999b), while \textit{PR-4} and \textit{PDF1.2} are indicators for JA/ET-dependent responses (Penninckx et al. 1996; 1998; Thomma et al. 1998; 1999b).

Total RNA was isolated and treated with RNase-free DNase (Promega, WI, USA). 500 ng of total RNA was synthesized with oligo dT primer using a PrimeScript RT reagent kit (Takara, Otsu, Japan). qRT-PCR was performed with SYBR Green PCR Master Mix (BIO-Rad Laboratories, CA, USA) using the first-strand cDNA as a template on an Mj Opticon (Bio-Rad Laboratories). qRT-PCR mixtures consisted of 1xSYBR Green I PCR Master Mix and 200 nM (each) sense and antisense primers. Following a preliminary denaturation step at 95°C for 30 s, the reaction mixtures were cycled 40X at 95°C for 5 s and at 65°C for 20 s. The target sample copy number was averaged for two reactions, and the experiment was repeated twice. The expression of \textit{CBP20} gene was used for normalization as a standard control gene. Nucleotide sequences of gene-specific primers were as follows: \textit{CBP20} (At5g44200; forward primer 5′-CCT TG TGC TGC TGC TGC TT-3′, reverse primer 5′-TGT TTC TTC TTC TTC TT-3′); \textit{PR-1} (At2g14610; forward primer 5′-CCC ACA AGA TTA TCT AAG GGT TCA C-3′, reverse primer 5′-CCC TCG CTG CCC ACT GCA T-3′) (Jirage et al. 2001); \textit{PR-4} (At3g04720; forward primer 5′-CCT TGT TGA TAG CCA AAA CCA TC-3′, reverse primer 5′-TTG GTA GTC AAC AAT GAG ATG -3′); \textit{PDF1.2} (At5g44420; forward primer 5′-TGT CCC ACT TGG CTT CTC G-3′, reverse primer 5′-CCA TCA TCA CCC TTA TCT CG C-3′). The gene expression is shown as relative values set at a value of 1 in the control plants. This experiment was repeated twice with similar results.

Transcript levels of \textit{PR-1} increased with time in the \textit{Ler} but slight induction by 24 hpi in the Col-0 plant (Figure 4). Expression of the \textit{PR-4} gene in \textit{Ler} plants inoculated with \textit{B. cinerea} increased between 0 and 24 hpi. In the inoculated Col-0 plants, the expression of \textit{PR-4} also increased with time, but induction of \textit{PR-4} was weaker and slower than that of \textit{Ler}. Transcript levels of \textit{PDF1.2} also increased between 0 and 24 hpi in both the \textit{Ler} and Col-0 plants, but induction of \textit{PDF1.2} in the Col-0 was weaker than that of \textit{Ler}. The defense related genes were expressed during development of \textit{B. cinerea} spores deposited on \textit{Ler} leaf surfaces, contained spore germination and restricted hyphal growth but not penetration during the first 24 h after inoculation.

To further investigate the roles of the SA-dependent defense response pathways against \textit{B. cinerea}, we inoculated the pathogen into various \textit{Arabidopsis} mutants (Figure 5). Mutant lines \textit{defense no death (dnd1)} (Nos background), that was obtained from a collection of \textit{Ds} transposon-tagged lines (Kuromori et al. 2004), and \textit{cpr5-2} (approximately 87% Col-0 and 13% Nos in chromosomal composition) plants exhibit high levels of SA (Bowling et al. 1997; Yu et al. 1998), while \textit{LernahG} (Ler background) fails to accumulate SA (Gaffney et al. 1993). Susceptibility to \textit{B. cinerea} was determined using an entire plant assay. One or two 5-µl drops of the spore suspension (1.5×10⁶ spores ml⁻¹ in 1/2 PDB) were placed on each attached leaf without wounding. The lesion diameter varied considerably among mutants with the 2-day lesion size ranging from 0 mm for \textit{LernahG} to 5 mm for \textit{cpr5-2}. Control plants inoculated with 1/2 PDB instead of the fungus did not develop any lesions, while the \textit{dnd1} and \textit{cpr5-2} mutants inoculated with \textit{B. cinerea} developed necrotic lesions 2 days after inoculation. These lesions had expanded from the inoculation site by 2 dpi, and subsequently spread over the entire leaf. In contrast, \textit{LernahG} plants and wild-type \textit{Ler} plants did not develop
necrotic lesions. The sgt1b-1 and rar1-10 mutants (Ler background) also developed no lesion when inoculated with one 5-µl drop of the spore suspension by 2 dpi.

In this study, Arabidopsis Ler plants expressing the nahG gene inoculated with B. cinerea showed as much resistance as the parental plants (Ler-wild type). It has been reported that the nahG plants did not show increased susceptibility compared to wild-type plants (AbuQamar et al. 2006; Veronese et al. 2004). On the contrary, it has been reported that nahG plants had enhanced lesion formation at the site of B. cinerea infection (Ferarri et al. 2003; Govrin and Levine 2002). We demonstrated that the dnd1 and cpr5-2 mutants inoculated with B. cinerea began to develop necrotic lesions 2–3 days after inoculation. Other groups also reported that ssi2 mutants, that lose a stearoyl-ACP desaturase activity accompanied by the constitutive accumulation of elevated SA level, confer susceptibility to B. cinerea (Kachroo et al. 2001; Nandi et al. 2005). These results indicate that SA-signaling plays only a minor role in resistance against B. cinerea in Arabidopsis.

Govrin and Levine (2000) proposed that cell death induced by B. cinerea is an important component of virulence, since Botrytis promotes and benefits from host cell death. The expression of the 2 plant signaling components EDS1 and SGT1, which are required for HR-dependent resistance, enhanced the resistance to B. cinerea in Nicotiana benthamiana (Oirdi and Bouarab 2007). However, we showed that the dnd1 mutant, which does not show HR cell death, developed lesions by inoculation with the necrotrophic fungal pathogen B. cinerea. We also showed that the sgt1b-1 and rar1-10 mutants (Ler background) did not develop necrotic lesions by inoculation with B. cinerea. The SGT1 and RAR1 are important signaling components of R gene-mediated disease resistance (Azevedo et al. 2002). The present data indicate that defense responses against B. cinerea in Ler can be activated via R gene-independent defense pathway.

There are some discrepancies between our results and that of other studies (Denby et al. 2004; Govrin and Levine 2002). A possible explanation for this could be the use of a different pathogen strain, especially considering that different B. cinerea strains can exhibit variable degree of aggressiveness even on the same host (Govrin and Levine 2002). It seems that the differences may also have arisen because of the method adopted for inoculation with B. cinerea. In our study, the inoculum was placed on each attached leaf without wounding, while in the previous study the inoculum was placed on each attached leaf punctured with a needle (Govrin and Levine 2000; 2002) or on each detached leaf without wounding (Denby et al. 2004). Liu et al. (2007) reported that defense systems are less responsive in detached leaves than in intact plants. The loss of a systemic defense response in detached leaves likely is associated with increased susceptibility. On the other hand, wounding is often used to inoculate necrotrophic pathogens into leaves of host plants. It is supposed that wounding facilitates infection by necrotrophic pathogens. Therefore, we performed inoculation with B. cinerea by wounding and non-wounding methods (Figure 6). One or two 5-µl drops of the spore suspension (1.5 × 10^5 spores ml^-1 in 1/2 PDB) were placed on each attached leaf without wounding (Denby et al. 2004). Liu et al. (2007) reported that defense systems are less responsive in detached leaves than in intact plants. The loss of a systemic defense response in detached leaves likely is associated with increased susceptibility.

Recently, Chassot et al. (2008) reported that hyphal...
growth of *B. cinerea* in wounding leaves was strongly inhibited compared to unwounded control. Because wounding of leaf surface provides entrance for invading pathogen, including necrotrophic and bacteria, plants respond to the injury by localized defense responses (Reymond et al. 2000). Therefore, wounding inoculation may cause activation of plant defense mechanisms because of the wounding stress.

In summary, *B. cinerea* induced a defense response in *Arabidopsis*, mediated by ET-signaling pathway. To understand the genetic and molecular basis of plant-pathogen interactions, ecotypes of *Arabidopsis* that differ in their ability to resist infection by *B. cinerea* are very helpful. We also showed that SA plays only a minor role in preventing systemic infection with *B. cinerea*. The gray mold on the model plant *Arabidopsis*, caused by *B. cinerea* infection, provides a valuable new genetic system for analysis of fungal pathogenicity factors as well as of host responses in a necrotrophic disease interaction.

Acknowledgments

This work was supported by the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry, and by the Industrial Technology Research Grant Program in 2009 from New Energy and Industrial Technology Development Organization (NEDO) of Japan. It was also supported in part by KAKENHI (24580071 to YN and 21780038 to MN). We thank Mariko Miyashita, Yoko Iwasaki, and Yasuyo Katayama for their excellent technical assistance. The authors are deeply grateful to Mr. Y. Tomita at Horticultural Institute, Ibaraki Agricultural Center, Kumiai Chemical Industry Co., LTD, NIAS Genebank for *B. cinerea* isolates, Dr. J. Parker at Max-Plank Institute for crop1-1, Dr. X. Zhang at Duke University for Ler-nb4-1, ABRC for cpr5-2, and Drs. T. Ito and K. Shinozaki at RIKEN PSC for nd1.

References

Feys BF, Benedetti CE, Penfold CN, Turner JG (*1994)* Arabidopsis mutants selected for resistance to the phytoalexin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. *Plant Cell* 6: 751–759

